RESISTANCE OF A LIQUID TO THE MOTION OF A

GAS BUBBLE COMPRESSED BY PARALLEL WALLS
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It is well known [1] that for Reynolds numbers of NRe < 1 the hydrodynamic equations of an incom-
pressible liquid incorporating the Stokes approximation agree closely with experiment in relation to the re-
sistance coefficients of cylinders, spheres, and other bodies.

In this paper we shall apply the approximation in question to the motion of a gas bubble severely com-
pressed by parallel plane walls (Fig.1). The shape of the bubble is taken as almost cylindrical in view of
the fact that, when the bubble is severely crushed, the difference (r, — r;) is much smaller than r; (the
distance from the axis of the bubble to the wetting point) and r; (the distance from the axis to the meniscus).
We may therefore approximately regard the bubble as cylindrical with a radius r,.

If in the Navier-Stokes equations we reject the inertial terms, the equations for the steady-state case

will take the form

1/pgradp = vAV (1)

In addition to this we have the continuity equation

divV = 0

Applying the operation div to both sides of (1), we obtain

div gradp = 0 (2)

The system of equations (1) and (2) determines the flow field in the Stokes approximation.

Fig. 2

Let us introduce a rectangular coordinate system with its x axis
along the flow, its z axis perpendicular to the plane of the plate, and its
y axis parallel to the plates.

A flow of viscous liquid approaches the cylinder from infinity (on
the left) in the direction of the x axis. We shall consider that the bubble
remains stationary, i.e., its resistance is compensated by some ex-
ternal force,

We have to solve the system of equations (1) and (2) subject to
the following conditions. On moving away from the bubble to infinity
the flow degenerates info the well-known Poisseuille flow; the velocity
component normal to the surface of the bubble is equal to zero at that
surface. We assume that the force of surface tension is so great that
the sections cut off from the bubble by planes parallel to the walls are
almost circular.

Let us take as a linear scale the radius of the bubble r; and as a
scale of velocity the velocity V, at infinity. For £ = x/1r; — @ or n =
y/ry — = only one velocity component will be different from zero
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o = V/Vo (v, v, 0),
o -

u=t— (1= (3)

Here 2h is the distance between the plates.
Let us introduce the polar coordinates R and ¢

E==rcosp, MN=rsing (r==R [ rs)

In these coordinates, Eq. (2) takes the form

9%t 1 o= i & ' »
w t Tt g3 =0 ("":TVT') 4)

Here r is the dimensionless pressure. We shall solve Eq. (4) by the method of variable separation
and confine attention to the first term of the resultant series

%= a{r 4+ b/ rjcosp (8)

where @ and b are constants of integration which have to be determined. It is clear from the geometry of
the flow and Eq. (5) that 87 /8¢ = a as r — <, We have hitherto everywhere assumed that the pressure is
independent of £ and that the component of velocity in the { direction is zero. The components u and v de-
pend on ¢, and we derive the following equations for these from (1):

u { &y 1 3 an . b

3 +"'{.‘ o T T g + oz = alg, (1" rt 00'52‘) ©
8% 1 ov i1 8y b .
o T E T et = Wre T sin2e 0

The values of u and v should vanish at £ = +h/r;. Furthermore, the radial velocity up = ucosy +
vsing at r=1 should also vanish. By considering (3) and (6) as r — = we obtain the relation aNRe =
“‘21‘02 /hz.

Remembering the foregoing relationship, from {6) and (7) we obtain the solutions

‘ o b R b .
u.—_(imwh—z-—?)(i—-r—f)gosmp, v=-—-—(§—- ;:, §2)—1;§-sm2q>7

From the two latter expressions we have for up

r 2 b
R
1t follows from fhe foregoing and also from the conditions on the surface of the cylinder that b =1
and hence

ur- = (:l — r}:: {;2) (1 — %“) 08 @ ; (8)

The surface of the cylinder has a "liguid" boundary, so that the tangential stress on the surface of
the cylinder should be equal to zero. The solution here obtained only satisfies this condition approximately,
However, in calculating the total force acting in the flow on the cylinder, we shall consider the tangential
stress as being exactly zero, and the force to be determined will be the total forece arising from all the
stregses normal fo the surface,

The normal force acting on an element of the cylinder [2] is

o 9
Fo=—p+ 2 35 W=uve) ©

where U is the dimensional component of the velocity V. Transforming to dimensional quantities in (8)
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From (10) we have

Uy, 22 ) 2
—_ =Vo{l— —-] —cos
oR |R=r., ‘ ( h* ) 1o ¢

The force acting on the cylinder

2
F = S F o c0s @ rodzdg = 8rpVoh (—:—23~ + -%—) (11)
5

Under the assumptions made, the expression for the resistive force takes the form

F =8apVord®h  (rY he>1 (12)

Equation {12) was tested experimentally. For this purpose we made an apparatus the working part of
which (Fig. 2) was a plane channel with parallel walls separated by 2h = 1 mm; the length of the channel
was L = 350 mm and the width D = 80 mm. The height of the channel 2h was chosen from the following con-
siderations. The fall in hydrostatic pressure over the height of the channel should be smaller than the
pressure inside the bubble for a bubble diameter of the order of 10 mm. For ¢ = 70 dyn/cm a value of
the order of 1 mm is thus obtained for the height of the channel,

The external force holding the bubble stationary in the flow of liquid was the Archimedes force. To
prevent the bubble from being distorted under the influence of the resistance of the liquid and the
Archimedes force, and also to ensure that NRe < 1, the slope of the channel (angle ) to the horizontal was
made no greater than 5°. In the inclined position of the channel, the bubble was prevented from surfacing
by suitably choosing the flow of liquid passing through the channel cross section.

Let the radius of the bubble be ry, the slope of the channel plane to the horizontal «, the density of the
liquid p, and the free~fall acceleration g. Then the Archimedes force of repulsion acting on the bubble
may be expressed by the equation

F = 2nr *hpgsina (13)

Since the velocity profile a long way from the bubble has the form V = V(1 —Z% /h?), the flow of liquid
in unit time for a channel width of D is given by the expression

h

2
Q =DV, S (1—%)&:%1)1/0}1 (14)
=h
Using (12)-(14) we obtain
301
K= hDgpsina t (15)

Equation (15) is the equilibrium condition for the bubble in the channel. This condition does not de-
pend on ry; it thus follows that if a bubble with one particular radius is balanced experimentally, then a
bubble of any other radius (subject to the aforementioned stipulations) will also be in equilibrium.

Let us give the experimental values of the complex K for various values of the slope (sin o) and
bubble diameter (2rg) in mm:

sina =0.19 0.3 0.35 0.37 0.52 0.63
2ry=16.0 6.0 5.5 6.0 6.0 5.8
K=1.20 0.89 0.81 1.14 1.10 1.09
sina=0.63 0.75 0.75 0.75 0.77 0.77
2r, =6.7 50 8.8 10.2 5.5 9.2
K=1.29 1.02 1.6 1.28 0.81 0.9

We see that K= 1.0 + 0,15; furthermore, for a fixed value of «, K depends slightly on ry; however,
this dependence is not very severe (~20%) and hardly exceeds the scatter of the experimental points.

We see from (12) that F is inversely proportional to h; this apparent contradiction is removed if we
remember that Eq. (12) was obtained for the condition roz /2> 1, or if we consider Eq. (11). On increasing
h and keeping the other parameters constant, not only does the area of the bubble alter, which should lead
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to an increase in the resistance, buf the gradients in the velocity profile change also. On increasing h the
velocity gradients diminish, which reduces the resistance to the motion. The resultant effect is expressed
in Eqgs. (11) and (12).
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