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It is  wel l  known [1] that  for  Reynolds numbers  of NRe < 1 the hydrodynamic  equations of an incom-  
p r e s s i b l e  l iquid inco rpora t ing  the Stokes approx imat ion  ag ree  c lose ly  with expe r imen t  in r e l a t i on  to the r e -  
s i s t ance  coeff ic ients  of c y l i n d e r s ,  s p h e r e s ,  and o ther  bod ies .  

In this  paper  we sha l l  apply the approx imat ion  in quest ion to the mot ion of a gas bubble s e v e r e l y  c o m -  
p r e s s e d  by p a r a l l e l  plane wal l s  (Fig.  1). The shape of the bubble is taken as a lmos t  cy l i nd r i ca l  in view of 
the fact  that ,  when the bubble is  s e v e r e l y  c rushed ,  the d i f fe rence  (r 0 - rl) is  much s m a l l e r  than r 1 (the 
d i s tance  f rom the axis  of the bubble to the wett ing point) and r 0 (the d i s tance  f rom the axis  to the men i scus ) .  
We may  the r e fo re  app rox ima te ly  r e g a r d  the bubble as c y l i n d r i c a l  with a r ad ius  r 0. 

If in the Nav ie r -S tokes  equations we r e j e c t  the i n e r t i a l  t e r m s ,  the equations for  the s t e a d y - s t a t e  case  
wi l l  take  the fo rm 

i / p gradp = vhV 

In addi t ion to th is  we have the continuity equation 

d i v V  ~ 0 

Applying the opera t ion  div to both s ides  of (1), we obtain 

(1) 

div gradp = 0 (2) 

The s y s t e m  of equations (1) and (2) d e t e r m i n e s  the flow f ie ld  in the Stokes approx imat ion .  

Fig. 1 

Let us in t roduce a r ec t angu la r  coord ina te  sys t em with i ts  x axis  
along the flow, i ts  z axis  pe r pe nd i c u l a r  to the plane of the p la te ,  and i ts  
y axis  p a r a l l e l  to the p la t e s .  

A flow of v i scous  liquid approaches  the cy l inder  f rom infinity (on 
the [eft) in the d i r ec t ion  of the x axis .  We shal l  cons ide r  that the bubble 
r e m a i n s  s t a t iona ry ,  i . e . ,  i ts  r e s i s t a n c e  is compensa ted  by some ex-  
t e rna l  force .  

F 

Fig. 2 

We have to solve the sy s t em of equations (1) and (2) subject  to 
the following condit ions.  On moving away f rom the bubble to infini ty 
the flow degene ra t e s  into the wel l -known P o i s s e u i l l e  flow; the ve loc i ty  
component normal  to the sur face  of the bubble is  equal to ze ro  at that 
sur face .  We as sume  that the force  of sur face  tension is so g rea t  that 
the sec t ions  cut off f rom the bubble by p lanes  p a r a l l e l  to the wal l s  a re  
a lmos t  c i r c u l a r .  

Let us take as a l i n e a r  sca le  the rad ius  of the bubble r 0 and as a 
sca le  of ve loc i ty  the ve loc i ty  V 0 at infinity.  F o r  ~ = x / r  0 ~ ~ o r  V = 
y / r  0 ~ ~ only one ve loc i ty  component will  be di f ferent  f rom zero  
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co = V/Vo (u, v, o )  

~-'r@ ~ (~ z 

Here 2h is the distance between the plates. 

Let us introduce the polar  coordinates R and go 

~ =  r cosCp, I1 = r s in (  p (r=,'~ / to) 

(3) 

In these coordinates ,  Eq. (2) takes the form 

Or' "+ T - - ~ -  + --/T"-ff~ - = 0  ~ ) = ~  (4) 

Here 7r is the dimensionless  p re s su re .  We shall solve Eq. (4) by the method of variable separat ion 
and confine attention to the f i rs t  t e rm of the resultant  se r ies  

:t = a (r + b I r)cosq~ (5) 

where a and b are  constants of integration which have to be determined.  It is c lea r  f rom the geomet ry  of 
the flow and Eq. (5) that 0 ~ / 0 ~  = a as r ~ ~.  We have hitherto everywhere  assumed that the p r e s s u r e  is 
independent of ~ and that the component of velocity in the ~ direct ion is zero .  The components u and v de-  
pond on ~, and we derive the following equations for  these f rom (1): 

~t t  ~ t Oz, "~ t O~t 02it aNl~ e ~i b cos2qO 
or, T ~ ~ -5-~- + ~ = ~ - (6) 

0% I Ov i O~v Os~ b 

The values of u and v should vanish at ~ = * h / r 0 .  Fu r the rmore ,  the radial  veloci ty Ur = ucosgo + 
vsin~P at r = 1 should also vanish. By considering (3) and (6) as r -,. ~o we obtain the relation aNRe = 
-2ro ~ / h  2. 

Remember ing the foregoing relationship,  f rom (6) and (7) we obtain the solutions 

ro t b 
- 

F r o m  the two la t ter  express ions  we have for u r 

1 ~r~ ~z~ f" b 

It follows f rom the foregoing and also from the conditions on the surface of the cylinder that b = 1 
and hence 

The surface of the cyl inder  has a "liquid" boundary, so that the tangential s t r e s s  on the surface of 
the cylinder should be equal to zero .  The solution here obtained only sa t is f ies  this condition approximately.  
However, in calculating the total force acting in the flow on the cylinder,  we shall consider  the tangential 
s t r e s s  as being exactly zero ,  and the force to be determined will be the total force ar is ing f rom all the 
s t r e s ses  normal  to the surface.  

The normal  force acting on an element of the cylinder [2] is 

ou  (9) 

where U is the dimensional component of the veloci ty  V. Transforming to dimensional quantities in (8) 

(io) 
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F r o m  (10) we have 

OUR = V o ( l - -  z~ ~ 2 ~-) T o  ~o~ OR R=ro \ 

The force  act ing on the cy l inder  

F _ I F i c c o s ~ r o d z d ~ = 8 g ~ V a h ( + + ~ )  (11) 

S 

Under the a s sumpt ions  made ,  the expres s ion  for  the r e s i s t i v e  force  takes  the form 

F =8.~l~Voro~[h (ro~ no'~l) (12) 

Equation (12) was t e s ted  expe r imen ta l l y .  F o r  this  purpose  we made an appara tus  the working pa r t  of 
which (Fig.  2) was a plane channel with p a r a l l e l  wal l s  s e p a r a t e d  by 2h = 1 ram; the length of the channel 
was L = 350 mm and the width D = 80 mm.  The height of the channel 2h was chosen f rom the following con- 
s i de ra t i ons .  The fal l  in hyd ros t a t i c  p r e s s u r e  over  the height of the channel should be s m a l l e r  than the 
p r e s s u r e  inside the bubble for  a bubble d i a m e t e r  of the o r d e r  of 10 mm.  F o r  a = 70 dy-n/cm a value of 
the o r d e r  of 1 mm is thus obtained for  the height of the channel .  

The ex te rna l  force  holding the bubble s t a t i ona ry  in the flow of l iquid was the A r c h i m e d e s  force .  To 
prevent  the bubble f rom being d i s to r t ed  under  the influence of the r e s i s t a n c e  of the liquid and the 
A r c h i m e d e s  force ,  and a lso  to ensure  that NRe < 1, the slope of the channel (angle c~) to the hor izonta l  was 
made no g r e a t e r  than 5 ~ . In the incl ined posi t ion of the channel ,  the bubble was prevented  f rom surfac ing  
by su i tab ly  choosing the flow of l iquid pass ing  through the channel c r o s s  sect ion.  

Let the r ad iu s  of the bubble be r0, the slope of ~he channel plane to the hor izonta l  o~, the dens i ty  of the 
l iquid p, and the f r e e - f a l l  a c c e l e r a t i o n  g. Then the A r c h i m e d e s  force  of repu ls ion  acting on the bubble 

may  be e x p r e s s e d  by the equation 

F = 2groehpgsin~ (13) 

Since the ve loc i ty  prof i le  a long way f rom the bubble has  the fo rm V = V0(1 -7 ,  2/h2), the flow of l iquid 
in unit t ime for  a channel width of D is given by the e x p r e s s i o n  

h 
g2 

--h ~ DVoh 

Using (12)-(14) we obtain 

(14) 

3Ql~ i (15) 
K--  h3Dg psinct --  

Equation (15) is  the equ i l ib r ium condition for  the bubble in the channel.  This  condition does not de -  
pend on r0; it thus follows that  if a bubble with one p a r t i c u l a r  r ad ius  is  balanced expe r imen ta l l y ,  then a 
bubble of any o ther  r ad ius  (subject  to the a forement ioned  st ipulat ions)  wil l  a l so  be in equ i l ib r ium.  

Let  us give the expe r imen ta l  va lues  of the complex  K for va r i ous  va lues  of the slope (sin a) and 
bubble d i a m e t e r  (2r0) in mm: 

sin,v = 0 . t 9  0.3 0.35 0,37 0.52 0.63 
2 r o = 6 . 0  6.0 5.5 6.0 6.0 5.8 

K = t .20 0.89 0.8t  t .14 t .10  1.09 
s i n a  = 0.63 0.75 0.75 0.75 0.77 0.77 

2r 0 = 6 . 7  5.0 8.8 i0 .2  5.5 9.2 
/ / =  t .29 i .02  1,.i6 i .28 0.8i  0.92 

We see that K = 1.0 4- 0.15; f u r t h e r m o r e ,  for  a fixed value of c~, K depends s l ight ly  on r0; however ,  
this  dependence is not v e r y  s eve re  (~20~) and ha rd ly  exceeds  the s c a t t e r  of the expe r imen ta l  points .  

We see f rom (12) that F is  i n v e r s e l y  p ropor t iona l  to h; this  apparen t  cont rad ic t ion  is  r emoved  if we 
r e m e m b e r  that Eq. (12) was obtained for  the condit ion r02/h 2 >> 1, or  if we cons ide r  Eq. (11). On inc rea s ing  
h and keeping the o ther  p a r a m e t e r s  constant ,  not only does  the a r e a  of the bubble a l t e r ,  which should lead  
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to an increase in the resistance,  but the gradients in the velocity profile change also. On increasing h the 
velocity gradients diminish, which reduces the resistance to the motion. The resultant effect is expressed 
in Eqs. (11) and (12). 

lo 
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